

Methods for enhancing quality of fisheries seeds through genetic improvement

Nguyen Van Sang

Southern Branch of National Center of Freshwater
Fisheries Seeds
Research Institute of Aquaculture II

Decisive factors for seed quality

Key methods

1. Hybriding
2. Inbreeding
3. Hybriding that avoids inbreeding, seed selection
4. Genetic technologies
5. Advanced bio-technologies – gene technologies
6. General application for seed quality improvement.

1. Hybriding

- Taking the advantages, i.e. the outstanding characteristics of 2 strains or species when hybridizing.
- Easy to implement, low cost, can be applied at hatcheries.

1.1. Inter-species hybriding:

- Between 2 species of different families
 - It is very difficult to happen
 - Unfertile hybrid animal
 - However, it can be happened as in case of Flower Horn (**Rajah cichlasonma**) in the 90s.
- Between different species of the same race:
 - Guppy fish: different colors
 - Discus fish: different colors
 - Yellow catfish x Clarias catfish: good taste flesh x rapid growth: *Clarias macrocephalus* x *C. gariepinus*
 - Wels catfish x green wels catfish: *Ictalurus punctatus* x *I. furcatus*
 - Tilapia: *Oreochromis niloticus* x *O. aureus*: high rate of male Tilapia
 - *O. mossambicus* x *O. niloticus*: rapid growth of 25%, salinity tolerance

- Hybriding between different strains of the same specie: hybriding of populations that live geographically far from each others
 - Common carp: based on different hybridings among various strains, 3 hybriding techniques have been worked out that give 20 – 25% of advantages as compared to the traditional strains, i.e. Szarvas 215, Szarvas P.31 and Szarvas P.34. During the 80s, 80% of common carp production in Hungary was based on the hybriding advantages of HAKI
 - American catfish: 2 strains of Marion x Kansas: 25% improvement for disease resistance and 55% improvement for growth rate.
 - The average level of hybriding advantage for internal and cross-breeding among 8 strains of Tilapia (*Oreochromis noloticus*) is 4.3%, of which there were 2 techniques with hybriding advantage of 11 and 13%;

- For rainbow trout, the level of hybriding advantage is 25%.
- 3 techniques that allowed exceptional growth rate up to 35% in case of hybriding between Thai strain and 3 other strains.
-
- Tien Giang silver carp x Can Tho silver carp
- Taking the hybriding advantages in order to improve the growth rate.
- **Koi Fish**

2. Inbreeding

- Means close copulation among individuals of the same genetic type, i.e.: children hybrid with parents, children individuals of the same population.
 - Increase homozygous rate, create form homogeneity: applied for ornamental fishes.
 - High risk of degradation, deformity and mortality rate.
 - Inbreeding rate:
 - $\Delta F = 1/2N$
 - $N_e = 4NmNf/Nm+Nf$
 - 1 male x 2 females: 25 males x 50 females, $N_e=67$, $F=0.75\%$ (**0.67%**)
 - 1 male x 1 female: 25 males x 25 females, $N_e=50$, $F=1\%$

Avoid inbreeding:

- Stocking population: 250 – 300 individuals
- Represented for 30 – 40 parents of the previous generation
- $N_e=100$
- $\Delta F=0,5\%$

3. Seed selection and inbreeding avoidance

- Mono-gene character:
 - 1-4 decisive genes;
 - Quality character: color, types of color, types of scale.
 - Types of scales for common carp
 - Colors of Koi carp
- Multi-gene character:
 - Many decisive genes: 100 genes
 - Quantity character: growth, fillet, FCR, disease resistance, fat, color of flesh

- Selection:
 - Changing populations in the good ways,
 - Selection of the individuals with a good genetic characteristic for the next generation,
 - Depending on the genetic ratio
 - Children – children genetic value = (Father genetic value + mother genetic value)/2 **+/- Mendelian sampling**
- Material formation:
 - Rich gene source: 4-5 populations
 - **Inbreeding avoidance:** optimal contribution selection
- Selection characters :
 - Growth, FCR, disease resistance, color of flesh, fat in fillets, early maturation, etc.

- **Marking method:**
 - Number writing
 - Cold, hot carving
 - Floy tag
 - Electrical marking
 - Color ing
- **Selection method:**
 - Individua selection
 - Family selection
 - Integrated selection
- **Distribution:**
 - Improved seeds are distributed to hatcheries for mass production

International seed selection programs and their effectiveness

- Salmon
 - Faster growth: 100%
 - FCR: decreased from 1.1 to 0.85
- GIFT Tilapia
 - Faster growth: 60%
- Wels catfish:
 - Rapid growth:
- Tiger shrimp and Vannamei:
 - Resistance with TSV: 18%

Seed selection programs in Vietnam and their effectiveness

- Common carp
- GIFT Tilapia
- Silver carp
- Catfish (Tra)
- Red Tilapia
- *Macrobrachium rosenbergii*

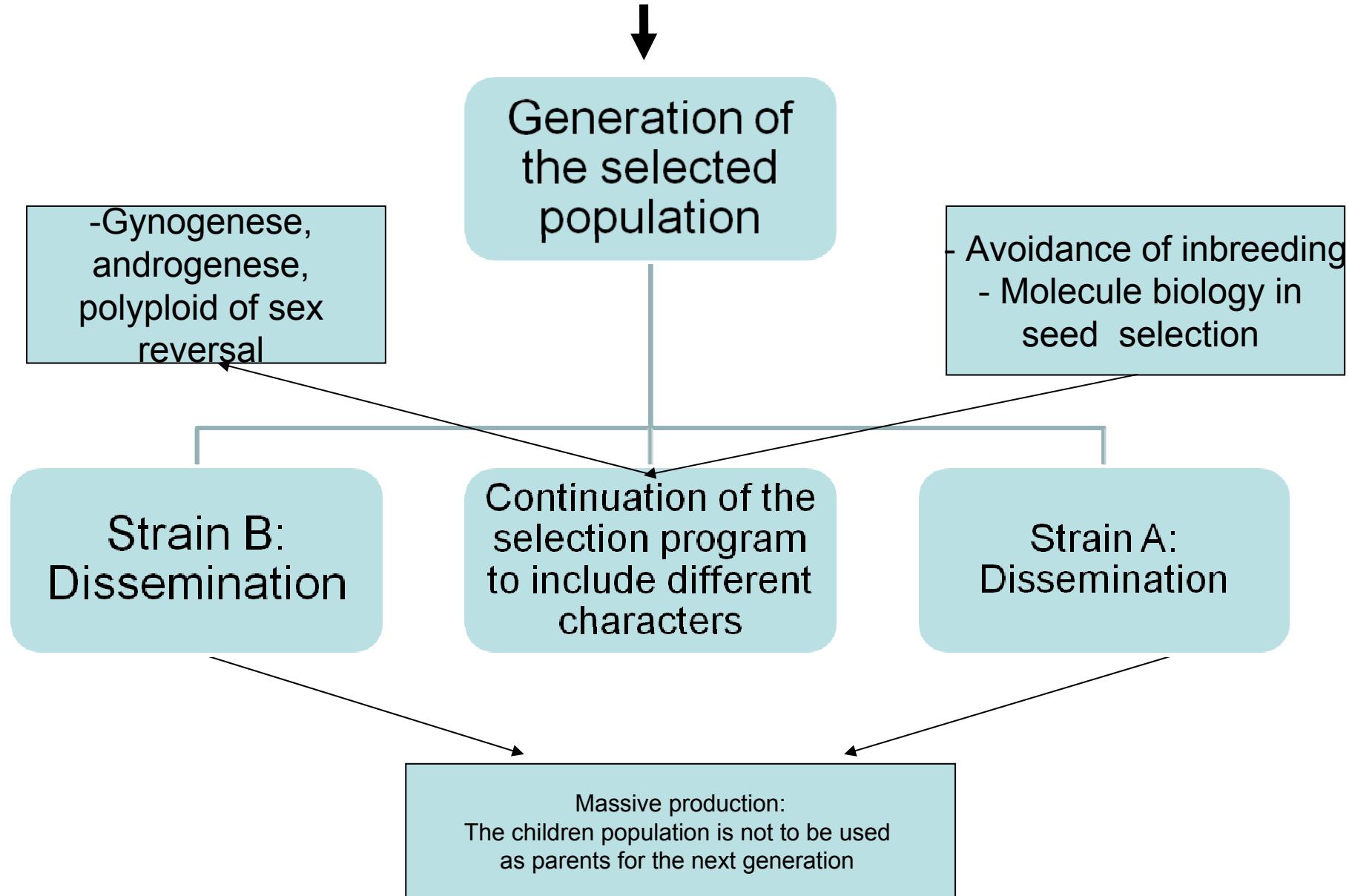
4. Genetic technologies

- Monosex production:
 - Gynogenesis
 - Sperm deactivation: UV
 - Shock: temperature (high, low), high pressure
 - Examples: Koi carp, silver carp
 - Androgenesis
 - Egg deactivation
 - Control of hormone and sex gland:
 - Male monosex:
 - 17^a methyltestosterone
 - » Tilapia
 - » Production of female monosex climbing perch
 - Male gland cutting: TCX
 - Female monosex: Estrogen
 - Production of male monosex Tilapia YY
 - » B-estradiol: female monosex with chromosome XY
 - » Female XY x normal male XY
 - » 25% YY male; analysed hybridizing
 - » YY male: B-estradiol; x YY normal male

- Polyploid
 - Triploid
 - Fertilization
 - Cold shock/short pressure shock after fertilization (post period II)
 - Tetraploid
 - Fertilization
 - Cold shock at the middle of the 1st cell separation period

5. Advanced biotechnology – gene technology

- Evaluation of the population variability for selection purpose: microsatellite indicator, AFLP, RAPD
- Linking indicator with the selected character (QTL & MAS):
 - Difficult to implement the character, due to selection and high economic value
 - Disease resistance, FCR, breeding capacity, cold and salinity tolerance
 - Costly and time consuming
- Gene transplantation:
 - The difficulty is whether the transplanted gene will be passed to the next generation.


6. Synthesized application for seed quality improvement

Population generation from various sources

Cross hybrid: to obtain advantages

Broodstock control and production

1	Quantity of kept broodstock	
2	Broodstock maturation age	
3	Broodstock size for breeding	
4	Number of breeding per year	
5	Male/Female ratio	
6	Number of couples/breeding	
7	Fish maturation level	
8	Number of rejected years	